Functions | |
| void | make_blobs (const raft::handle_t &handle, float *out, int64_t *labels, int64_t n_rows, int64_t n_cols, int64_t n_clusters, bool row_major=true, const float *centers=nullptr, const float *cluster_std=nullptr, const float cluster_std_scalar=1.f, bool shuffle=true, float center_box_min=-10.f, float center_box_max=10.f, uint64_t seed=0ULL) |
| void | make_blobs (const raft::handle_t &handle, double *out, int64_t *labels, int64_t n_rows, int64_t n_cols, int64_t n_clusters, bool row_major=true, const double *centers=nullptr, const double *cluster_std=nullptr, const double cluster_std_scalar=1.0, bool shuffle=true, double center_box_min=-10.0, double center_box_max=10.0, uint64_t seed=0ULL) |
| void | make_blobs (const raft::handle_t &handle, float *out, int *labels, int n_rows, int n_cols, int n_clusters, bool row_major=true, const float *centers=nullptr, const float *cluster_std=nullptr, const float cluster_std_scalar=1.f, bool shuffle=true, float center_box_min=-10.f, float center_box_max=10.0, uint64_t seed=0ULL) |
| void | make_blobs (const raft::handle_t &handle, double *out, int *labels, int n_rows, int n_cols, int n_clusters, bool row_major=true, const double *centers=nullptr, const double *cluster_std=nullptr, const double cluster_std_scalar=1.0, bool shuffle=true, double center_box_min=-10.0, double center_box_max=10.0, uint64_t seed=0ULL) |
| void | make_regression (const raft::handle_t &handle, float *out, float *values, int64_t n_rows, int64_t n_cols, int64_t n_informative, float *coef=nullptr, int64_t n_targets=1LL, float bias=0.0f, int64_t effective_rank=-1LL, float tail_strength=0.5f, float noise=0.0f, bool shuffle=true, uint64_t seed=0ULL) |
| GPU-equivalent of sklearn.datasets.make_regression as documented at: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html. More... | |
| void | make_regression (const raft::handle_t &handle, double *out, double *values, int64_t n_rows, int64_t n_cols, int64_t n_informative, double *coef=nullptr, int64_t n_targets=1LL, double bias=0.0, int64_t effective_rank=-1LL, double tail_strength=0.5, double noise=0.0, bool shuffle=true, uint64_t seed=0ULL) |
| void | make_regression (const raft::handle_t &handle, float *out, float *values, int n_rows, int n_cols, int n_informative, float *coef=nullptr, int n_targets=1LL, float bias=0.0f, int effective_rank=-1LL, float tail_strength=0.5f, float noise=0.0f, bool shuffle=true, uint64_t seed=0ULL) |
| void | make_regression (const raft::handle_t &handle, double *out, double *values, int n_rows, int n_cols, int n_informative, double *coef=nullptr, int n_targets=1LL, double bias=0.0, int effective_rank=-1LL, double tail_strength=0.5, double noise=0.0, bool shuffle=true, uint64_t seed=0ULL) |
| void | make_arima (const raft::handle_t &handle, float *out, int batch_size, int n_obs, ARIMAOrder order, float scale=1.0f, float noise_scale=0.2f, float intercept_scale=1.0f, uint64_t seed=0ULL) |
| void | make_arima (const raft::handle_t &handle, double *out, int batch_size, int n_obs, ARIMAOrder order, double scale=1.0, double noise_scale=0.2, double intercept_scale=1.0, uint64_t seed=0ULL) |
| void ML::Datasets::make_arima | ( | const raft::handle_t & | handle, |
| double * | out, | ||
| int | batch_size, | ||
| int | n_obs, | ||
| ARIMAOrder | order, | ||
| double | scale = 1.0, |
||
| double | noise_scale = 0.2, |
||
| double | intercept_scale = 1.0, |
||
| uint64_t | seed = 0ULL |
||
| ) |
| void ML::Datasets::make_arima | ( | const raft::handle_t & | handle, |
| float * | out, | ||
| int | batch_size, | ||
| int | n_obs, | ||
| ARIMAOrder | order, | ||
| float | scale = 1.0f, |
||
| float | noise_scale = 0.2f, |
||
| float | intercept_scale = 1.0f, |
||
| uint64_t | seed = 0ULL |
||
| ) |
Generates a dataset of time series by simulating an ARIMA process of a given order.
| [in] | handle | cuML handle |
| [out] | out | Generated time series |
| [in] | batch_size | Batch size |
| [in] | n_obs | Number of observations per series |
| [in] | order | ARIMA order |
| [in] | scale | Scale used to draw the starting values |
| [in] | noise_scale | Scale used to draw the residuals |
| [in] | intercept_scale | Scale used to draw the intercept |
| [in] | seed | Seed for the random number generator |
| void ML::Datasets::make_regression | ( | const raft::handle_t & | handle, |
| double * | out, | ||
| double * | values, | ||
| int | n_rows, | ||
| int | n_cols, | ||
| int | n_informative, | ||
| double * | coef = nullptr, |
||
| int | n_targets = 1LL, |
||
| double | bias = 0.0, |
||
| int | effective_rank = -1LL, |
||
| double | tail_strength = 0.5, |
||
| double | noise = 0.0, |
||
| bool | shuffle = true, |
||
| uint64_t | seed = 0ULL |
||
| ) |
| void ML::Datasets::make_regression | ( | const raft::handle_t & | handle, |
| double * | out, | ||
| double * | values, | ||
| int64_t | n_rows, | ||
| int64_t | n_cols, | ||
| int64_t | n_informative, | ||
| double * | coef = nullptr, |
||
| int64_t | n_targets = 1LL, |
||
| double | bias = 0.0, |
||
| int64_t | effective_rank = -1LL, |
||
| double | tail_strength = 0.5, |
||
| double | noise = 0.0, |
||
| bool | shuffle = true, |
||
| uint64_t | seed = 0ULL |
||
| ) |
| void ML::Datasets::make_regression | ( | const raft::handle_t & | handle, |
| float * | out, | ||
| float * | values, | ||
| int | n_rows, | ||
| int | n_cols, | ||
| int | n_informative, | ||
| float * | coef = nullptr, |
||
| int | n_targets = 1LL, |
||
| float | bias = 0.0f, |
||
| int | effective_rank = -1LL, |
||
| float | tail_strength = 0.5f, |
||
| float | noise = 0.0f, |
||
| bool | shuffle = true, |
||
| uint64_t | seed = 0ULL |
||
| ) |
| void ML::Datasets::make_regression | ( | const raft::handle_t & | handle, |
| float * | out, | ||
| float * | values, | ||
| int64_t | n_rows, | ||
| int64_t | n_cols, | ||
| int64_t | n_informative, | ||
| float * | coef = nullptr, |
||
| int64_t | n_targets = 1LL, |
||
| float | bias = 0.0f, |
||
| int64_t | effective_rank = -1LL, |
||
| float | tail_strength = 0.5f, |
||
| float | noise = 0.0f, |
||
| bool | shuffle = true, |
||
| uint64_t | seed = 0ULL |
||
| ) |
GPU-equivalent of sklearn.datasets.make_regression as documented at: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html.
| [in] | handle | cuML handle |
| [out] | out | Row-major (samples, features) matrix to store the problem data |
| [out] | values | Row-major (samples, targets) matrix to store the values for the regression problem |
| [in] | n_rows | Number of samples |
| [in] | n_cols | Number of features |
| [in] | n_informative | Number of informative features (non-zero coefficients) |
| [out] | coef | Row-major (features, targets) matrix to store the coefficients used to generate the values for the regression problem. If nullptr is given, nothing will be written |
| [in] | n_targets | Number of targets (generated values per sample) |
| [in] | bias | A scalar that will be added to the values |
| [in] | effective_rank | The approximate rank of the data matrix (used to create correlations in the data). -1 is the code to use well-conditioned data |
| [in] | tail_strength | The relative importance of the fat noisy tail of the singular values profile if effective_rank is not -1 |
| [in] | noise | Standard deviation of the gaussian noise applied to the output |
| [in] | shuffle | Shuffle the samples and the features |
| [in] | seed | Seed for the random number generator |