Classes | |
| struct | DecisionTreeParams |
| struct | TreeMetaDataNode |
| struct | Dataset |
| struct | Quantiles |
| class | TreeliteType |
| class | TreeliteType< float > |
| class | TreeliteType< double > |
| class | TreeliteType< uint32_t > |
| class | TreeliteType< int > |
Typedefs | |
| typedef TreeMetaDataNode< float, int > | TreeClassifierF |
| typedef TreeMetaDataNode< double, int > | TreeClassifierD |
| typedef TreeMetaDataNode< float, float > | TreeRegressorF |
| typedef TreeMetaDataNode< double, double > | TreeRegressorD |
Functions | |
| void | set_tree_params (DecisionTreeParams ¶ms, int cfg_max_depth=-1, int cfg_max_leaves=-1, float cfg_max_features=1.0f, int cfg_max_n_bins=128, int cfg_min_samples_leaf=1, int cfg_min_samples_split=2, float cfg_min_impurity_decrease=0.0f, CRITERION cfg_split_criterion=CRITERION_END, int cfg_max_batch_size=4096) |
| Set all DecisionTreeParams members. More... | |
| template<class T , class L > | |
| std::string | get_tree_summary_text (const TreeMetaDataNode< T, L > *tree) |
| Obtain high-level tree information. More... | |
| template<class T , class L > | |
| std::string | get_tree_text (const TreeMetaDataNode< T, L > *tree) |
| Obtain detailed tree information. More... | |
| template<class T , class L > | |
| std::string | get_tree_json (const TreeMetaDataNode< T, L > *tree) |
| Export tree as a JSON string. More... | |
| typedef TreeMetaDataNode<double, int> ML::DT::TreeClassifierD |
| typedef TreeMetaDataNode<float, int> ML::DT::TreeClassifierF |
| typedef TreeMetaDataNode<double, double> ML::DT::TreeRegressorD |
| typedef TreeMetaDataNode<float, float> ML::DT::TreeRegressorF |
| std::string ML::DT::get_tree_json | ( | const TreeMetaDataNode< T, L > * | tree | ) |
Export tree as a JSON string.
| T | data type for input data (float or double). |
| L | data type for labels (int type for classification, T type for regression). |
| [in] | tree | CPU pointer to TreeMetaDataNode |
| std::string ML::DT::get_tree_summary_text | ( | const TreeMetaDataNode< T, L > * | tree | ) |
Obtain high-level tree information.
| T | data type for input data (float or double). |
| L | data type for labels (int type for classification, T type for regression). |
| [in] | tree | CPU pointer to TreeMetaDataNode |
| std::string ML::DT::get_tree_text | ( | const TreeMetaDataNode< T, L > * | tree | ) |
Obtain detailed tree information.
| T | data type for input data (float or double). |
| L | data type for labels (int type for classification, T type for regression). |
| [in] | tree | CPU pointer to TreeMetaDataNode |
| void ML::DT::set_tree_params | ( | DecisionTreeParams & | params, |
| int | cfg_max_depth = -1, |
||
| int | cfg_max_leaves = -1, |
||
| float | cfg_max_features = 1.0f, |
||
| int | cfg_max_n_bins = 128, |
||
| int | cfg_min_samples_leaf = 1, |
||
| int | cfg_min_samples_split = 2, |
||
| float | cfg_min_impurity_decrease = 0.0f, |
||
| CRITERION | cfg_split_criterion = CRITERION_END, |
||
| int | cfg_max_batch_size = 4096 |
||
| ) |
Set all DecisionTreeParams members.
| [in,out] | params | update with tree parameters |
| [in] | cfg_max_depth | maximum tree depth; default -1 |
| [in] | cfg_max_leaves | maximum leaves; default -1 |
| [in] | cfg_max_features | maximum number of features; default 1.0f |
| [in] | cfg_max_n_bins | maximum number of bins; default 128 |
| [in] | cfg_min_samples_leaf | min. rows in each leaf node; default 1 |
| [in] | cfg_min_samples_split | min. rows needed to split an internal node; default 2 |
| [in] | cfg_min_impurity_decrease | split a node only if its reduction in impurity is more than this value |
| [in] | cfg_split_criterion | split criterion; default CRITERION_END, i.e., GINI for classification or MSE for regression |
| [in] | cfg_max_batch_size | Maximum number of nodes that can be processed in a batch. This is used only for batched-level algo. Default value 4096. |