Functions | |
| void | preProcessData (raft::handle_t &handle, std::vector< MLCommon::Matrix::Data< float > * > &input_data, MLCommon::Matrix::PartDescriptor &input_desc, std::vector< MLCommon::Matrix::Data< float > * > &labels, float *mu_input, float *mu_labels, float *norm2_input, bool fit_intercept, bool normalize, cudaStream_t *streams, int n_streams, bool verbose) |
| void | preProcessData (raft::handle_t &handle, std::vector< MLCommon::Matrix::Data< double > * > &input_data, MLCommon::Matrix::PartDescriptor &input_desc, std::vector< MLCommon::Matrix::Data< double > * > &labels, double *mu_input, double *mu_labels, double *norm2_input, bool fit_intercept, bool normalize, cudaStream_t *streams, int n_streams, bool verbose) |
| void | postProcessData (raft::handle_t &handle, std::vector< MLCommon::Matrix::Data< float > * > &input_data, MLCommon::Matrix::PartDescriptor &input_desc, std::vector< MLCommon::Matrix::Data< float > * > &labels, float *coef, float *intercept, float *mu_input, float *mu_labels, float *norm2_input, bool fit_intercept, bool normalize, cudaStream_t *streams, int n_streams, bool verbose) |
| void | postProcessData (raft::handle_t &handle, std::vector< MLCommon::Matrix::Data< double > * > &input_data, MLCommon::Matrix::PartDescriptor &input_desc, std::vector< MLCommon::Matrix::Data< double > * > &labels, double *coef, double *intercept, double *mu_input, double *mu_labels, double *norm2_input, bool fit_intercept, bool normalize, cudaStream_t *streams, int n_streams, bool verbose) |
| template<typename T > | |
| std::vector< T > | getUniquelabelsMG (const raft::handle_t &handle, Matrix::PartDescriptor &input_desc, std::vector< Matrix::Data< T > * > &labels) |
| Calculate unique class labels across multiple GPUs in a multi-node environment. More... | |
| template<typename T > | |
| void | qnFit (raft::handle_t &handle, std::vector< Matrix::Data< T > * > &input_data, Matrix::PartDescriptor &input_desc, std::vector< Matrix::Data< T > * > &labels, T *coef, const qn_params &pams, bool X_col_major, bool standardization, int n_classes, T *f, int *num_iters) |
| performs MNMG fit operation for the logistic regression using quasi newton methods More... | |
| template<typename T , typename I > | |
| void | qnFitSparse (raft::handle_t &handle, std::vector< Matrix::Data< T > * > &input_values, I *input_cols, I *input_row_ids, I X_nnz, Matrix::PartDescriptor &input_desc, std::vector< Matrix::Data< T > * > &labels, T *coef, const qn_params &pams, bool standardization, int n_classes, T *f, int *num_iters) |
| support sparse vectors (Compressed Sparse Row format) for MNMG logistic regression fit using quasi newton methods More... | |
| std::vector<T> ML::GLM::opg::getUniquelabelsMG | ( | const raft::handle_t & | handle, |
| Matrix::PartDescriptor & | input_desc, | ||
| std::vector< Matrix::Data< T > * > & | labels | ||
| ) |
Calculate unique class labels across multiple GPUs in a multi-node environment.
| [in] | handle | the internal cuml handle object |
| [in] | input_desc | PartDescriptor object for the input |
| [in] | labels | labels data |
| void ML::GLM::opg::postProcessData | ( | raft::handle_t & | handle, |
| std::vector< MLCommon::Matrix::Data< double > * > & | input_data, | ||
| MLCommon::Matrix::PartDescriptor & | input_desc, | ||
| std::vector< MLCommon::Matrix::Data< double > * > & | labels, | ||
| double * | coef, | ||
| double * | intercept, | ||
| double * | mu_input, | ||
| double * | mu_labels, | ||
| double * | norm2_input, | ||
| bool | fit_intercept, | ||
| bool | normalize, | ||
| cudaStream_t * | streams, | ||
| int | n_streams, | ||
| bool | verbose | ||
| ) |
| void ML::GLM::opg::postProcessData | ( | raft::handle_t & | handle, |
| std::vector< MLCommon::Matrix::Data< float > * > & | input_data, | ||
| MLCommon::Matrix::PartDescriptor & | input_desc, | ||
| std::vector< MLCommon::Matrix::Data< float > * > & | labels, | ||
| float * | coef, | ||
| float * | intercept, | ||
| float * | mu_input, | ||
| float * | mu_labels, | ||
| float * | norm2_input, | ||
| bool | fit_intercept, | ||
| bool | normalize, | ||
| cudaStream_t * | streams, | ||
| int | n_streams, | ||
| bool | verbose | ||
| ) |
| void ML::GLM::opg::preProcessData | ( | raft::handle_t & | handle, |
| std::vector< MLCommon::Matrix::Data< double > * > & | input_data, | ||
| MLCommon::Matrix::PartDescriptor & | input_desc, | ||
| std::vector< MLCommon::Matrix::Data< double > * > & | labels, | ||
| double * | mu_input, | ||
| double * | mu_labels, | ||
| double * | norm2_input, | ||
| bool | fit_intercept, | ||
| bool | normalize, | ||
| cudaStream_t * | streams, | ||
| int | n_streams, | ||
| bool | verbose | ||
| ) |
| void ML::GLM::opg::preProcessData | ( | raft::handle_t & | handle, |
| std::vector< MLCommon::Matrix::Data< float > * > & | input_data, | ||
| MLCommon::Matrix::PartDescriptor & | input_desc, | ||
| std::vector< MLCommon::Matrix::Data< float > * > & | labels, | ||
| float * | mu_input, | ||
| float * | mu_labels, | ||
| float * | norm2_input, | ||
| bool | fit_intercept, | ||
| bool | normalize, | ||
| cudaStream_t * | streams, | ||
| int | n_streams, | ||
| bool | verbose | ||
| ) |
| void ML::GLM::opg::qnFit | ( | raft::handle_t & | handle, |
| std::vector< Matrix::Data< T > * > & | input_data, | ||
| Matrix::PartDescriptor & | input_desc, | ||
| std::vector< Matrix::Data< T > * > & | labels, | ||
| T * | coef, | ||
| const qn_params & | pams, | ||
| bool | X_col_major, | ||
| bool | standardization, | ||
| int | n_classes, | ||
| T * | f, | ||
| int * | num_iters | ||
| ) |
performs MNMG fit operation for the logistic regression using quasi newton methods
| [in] | handle | the internal cuml handle object |
| [in] | input_data | vector holding all partitions for that rank |
| [in] | input_desc | PartDescriptor object for the input |
| [in] | labels | labels data |
| [out] | coef | learned coefficients |
| [in] | pams | model parameters |
| [in] | X_col_major | true if X is stored column-major |
| [in] | standardization | whether to standardize the dataset before training |
| [in] | n_classes | number of outputs (number of classes or 1 for regression) |
| [out] | f | host pointer holding the final objective value |
| [out] | num_iters | host pointer holding the actual number of iterations taken |
| void ML::GLM::opg::qnFitSparse | ( | raft::handle_t & | handle, |
| std::vector< Matrix::Data< T > * > & | input_values, | ||
| I * | input_cols, | ||
| I * | input_row_ids, | ||
| I | X_nnz, | ||
| Matrix::PartDescriptor & | input_desc, | ||
| std::vector< Matrix::Data< T > * > & | labels, | ||
| T * | coef, | ||
| const qn_params & | pams, | ||
| bool | standardization, | ||
| int | n_classes, | ||
| T * | f, | ||
| int * | num_iters | ||
| ) |
support sparse vectors (Compressed Sparse Row format) for MNMG logistic regression fit using quasi newton methods
| [in] | handle | the internal cuml handle object |
| [in] | input_values | vector holding non-zero values of all partitions for that rank |
| [in] | input_cols | vector holding column indices of non-zero values of all partitions for that rank |
| [in] | input_row_ids | vector holding row pointers of non-zero values of all partitions for that rank |
| [in] | X_nnz | the number of non-zero values of that rank |
| [in] | standardization | whether to standardize the dataset before training |
| [in] | input_desc | PartDescriptor object for the input |
| [in] | labels | labels data |
| [out] | coef | learned coefficients |
| [in] | pams | model parameters |
| [in] | n_classes | number of outputs (number of classes or 1 for regression) |
| [out] | f | host pointer holding the final objective value |
| [out] | num_iters | host pointer holding the actual number of iterations taken |