#include <tsne.h>
◆ algorithm
◆ dim
| int ML::TSNEParams::dim = 2 |
◆ early_exaggeration
| float ML::TSNEParams::early_exaggeration = 12.0f |
◆ epssq
| float ML::TSNEParams::epssq = 0.0025 |
◆ exaggeration_iter
| int ML::TSNEParams::exaggeration_iter = 250 |
◆ init
| TSNE_INIT ML::TSNEParams::init = TSNE_INIT::RANDOM |
◆ late_exaggeration
| float ML::TSNEParams::late_exaggeration = 1.0f |
◆ max_iter
| int ML::TSNEParams::max_iter = 1000 |
◆ metric
◆ min_gain
| float ML::TSNEParams::min_gain = 0.01f |
◆ min_grad_norm
| float ML::TSNEParams::min_grad_norm = 1e-7 |
◆ n_neighbors
| int ML::TSNEParams::n_neighbors = 1023 |
| float ML::TSNEParams::p = 2.0 |
◆ perplexity
| float ML::TSNEParams::perplexity = 50.0f |
◆ perplexity_max_iter
| int ML::TSNEParams::perplexity_max_iter = 100 |
◆ perplexity_tol
| float ML::TSNEParams::perplexity_tol = 1e-5 |
◆ post_learning_rate
| float ML::TSNEParams::post_learning_rate = 500.0f |
◆ post_momentum
| float ML::TSNEParams::post_momentum = 0.8 |
◆ pre_learning_rate
| float ML::TSNEParams::pre_learning_rate = 200.0f |
◆ pre_momentum
| float ML::TSNEParams::pre_momentum = 0.5 |
◆ random_state
| long long ML::TSNEParams::random_state = -1 |
◆ square_distances
| bool ML::TSNEParams::square_distances = true |
◆ theta
| float ML::TSNEParams::theta = 0.5f |
◆ verbosity
| rapids_logger::level_enum ML::TSNEParams::verbosity = rapids_logger::level_enum::info |
The documentation for this struct was generated from the following file: