cudf.Series.reindex#
- Series.reindex(index=None, *, axis=None, method: str | None = None, copy: bool = True, level=None, fill_value: ScalarLike | None = None, limit: int | None = None, tolerance=None)[source]#
Conform Series to new index.
- Parameters:
- indexIndex, Series-convertible, default None
New labels / index to conform to, should be specified using keywords.
- axis: int, default None
Unused.
- method: Not Supported
- copyboolean, default True
- level: Not Supported
- fill_valueValue to use for missing values.
Defaults to
NA
, but can be any “compatible” value.- limit: Not Supported
- tolerance: Not Supported
- Returns:
- Series with changed index.
Examples
>>> import cudf >>> series = cudf.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd']) >>> series a 10 b 20 c 30 d 40 dtype: int64 >>> series.reindex(['a', 'b', 'y', 'z']) a 10 b 20 y <NA> z <NA> dtype: int64
Pandas Compatibility Note
Note: One difference from Pandas is that
NA
is used for rows that do not match, rather thanNaN
. One side effect of this is that the series retains an integer dtype in cuDF where it is cast to float in Pandas.