Namespaces | |
opg | |
Functions | |
void | olsFit (const raft::handle_t &handle, float *input, size_t n_rows, size_t n_cols, float *labels, float *coef, float *intercept, bool fit_intercept, bool normalize, int algo=0, float *sample_weight=nullptr) |
void | olsFit (const raft::handle_t &handle, double *input, size_t n_rows, size_t n_cols, double *labels, double *coef, double *intercept, bool fit_intercept, bool normalize, int algo=0, double *sample_weight=nullptr) |
void | ridgeFit (const raft::handle_t &handle, float *input, size_t n_rows, size_t n_cols, float *labels, float *alpha, int n_alpha, float *coef, float *intercept, bool fit_intercept, bool normalize, int algo=0, float *sample_weight=nullptr) |
void | ridgeFit (const raft::handle_t &handle, double *input, size_t n_rows, size_t n_cols, double *labels, double *alpha, int n_alpha, double *coef, double *intercept, bool fit_intercept, bool normalize, int algo=0, double *sample_weight=nullptr) |
void | gemmPredict (const raft::handle_t &handle, const float *input, size_t n_rows, size_t n_cols, const float *coef, float intercept, float *preds) |
void | gemmPredict (const raft::handle_t &handle, const double *input, size_t n_rows, size_t n_cols, const double *coef, double intercept, double *preds) |
template<typename T , typename I = int> | |
void | qnFit (const raft::handle_t &cuml_handle, const qn_params ¶ms, T *X, bool X_col_major, T *y, I N, I D, I C, T *w0, T *f, int *num_iters, T *sample_weight=nullptr, T svr_eps=0) |
Fit a GLM using quasi newton methods. More... | |
template<typename T , typename I = int> | |
void | qnFitSparse (const raft::handle_t &cuml_handle, const qn_params ¶ms, T *X_values, I *X_cols, I *X_row_ids, I X_nnz, T *y, I N, I D, I C, T *w0, T *f, int *num_iters, T *sample_weight=nullptr, T svr_eps=0) |
Fit a GLM using quasi newton methods. More... | |
template<typename T , typename I = int> | |
void | qnDecisionFunction (const raft::handle_t &cuml_handle, const qn_params ¶ms, T *X, bool X_col_major, I N, I D, I C, T *coefs, T *scores) |
Obtain the confidence scores of samples. More... | |
template<typename T , typename I = int> | |
void | qnDecisionFunctionSparse (const raft::handle_t &cuml_handle, const qn_params ¶ms, T *X_values, I *X_cols, I *X_row_ids, I X_nnz, I N, I D, I C, T *coefs, T *scores) |
Obtain the confidence scores of samples. More... | |
template<typename T , typename I = int> | |
void | qnPredict (const raft::handle_t &cuml_handle, const qn_params ¶ms, T *X, bool X_col_major, I N, I D, I C, T *coefs, T *preds) |
Predict a GLM using quasi newton methods. More... | |
template<typename T , typename I = int> | |
void | qnPredictSparse (const raft::handle_t &cuml_handle, const qn_params ¶ms, T *X_values, I *X_cols, I *X_row_ids, I X_nnz, I N, I D, I C, T *coefs, T *preds) |
Predict a GLM using quasi newton methods. More... | |
cumlError_t | cumlSpQnFit (cumlHandle_t cuml_handle, const qn_params *pams, float *X, float *y, int N, int D, int C, float *w0, float *f, int *num_iters, bool X_col_major) |
cumlError_t | cumlDpQnFit (cumlHandle_t cuml_handle, const qn_params *pams, double *X, double *y, int N, int D, int C, double *w0, double *f, int *num_iters, bool X_col_major) |
cumlError_t ML::GLM::cumlDpQnFit | ( | cumlHandle_t | cuml_handle, |
const qn_params * | pams, | ||
double * | X, | ||
double * | y, | ||
int | N, | ||
int | D, | ||
int | C, | ||
double * | w0, | ||
double * | f, | ||
int * | num_iters, | ||
bool | X_col_major | ||
) |
cumlError_t ML::GLM::cumlSpQnFit | ( | cumlHandle_t | cuml_handle, |
const qn_params * | pams, | ||
float * | X, | ||
float * | y, | ||
int | N, | ||
int | D, | ||
int | C, | ||
float * | w0, | ||
float * | f, | ||
int * | num_iters, | ||
bool | X_col_major | ||
) |
void ML::GLM::qnDecisionFunction | ( | const raft::handle_t & | cuml_handle, |
const qn_params & | params, | ||
T * | X, | ||
bool | X_col_major, | ||
I | N, | ||
I | D, | ||
I | C, | ||
T * | coefs, | ||
T * | scores | ||
) |
Obtain the confidence scores of samples.
cuml_handle | reference to raft::handle_t object |
params | model parameters |
X | device pointer to a contiguous feature matrix of dimension [N, D] |
X_col_major | true if X is stored column-major |
N | number of examples |
D | number of features |
C | number of outputs (number of classes or 1 for regression) |
coefs | device pointer to model coefficients. Length D if fit_intercept == false else D+1 |
scores | device pointer to confidence scores of length N (for binary logistic: [0,1], for multinomial: [0,...,C-1]) |
void ML::GLM::qnDecisionFunctionSparse | ( | const raft::handle_t & | cuml_handle, |
const qn_params & | params, | ||
T * | X_values, | ||
I * | X_cols, | ||
I * | X_row_ids, | ||
I | X_nnz, | ||
I | N, | ||
I | D, | ||
I | C, | ||
T * | coefs, | ||
T * | scores | ||
) |
Obtain the confidence scores of samples.
cuml_handle | reference to raft::handle_t object |
params | model parameters |
X_values | feature matrix values (CSR format), length = X_nnz |
X_cols | feature matrix columns (CSR format), length = X_nnz, range = [0, ... D-1] |
X_row_ids | feature matrix compressed row ids (CSR format), length = N + 1, range = [0, ... X_nnz] |
X_nnz | number of non-zero entries in the feature matrix (CSR format) |
N | number of examples |
D | number of features |
C | number of outputs (number of classes or 1 for regression) |
coefs | device pointer to model coefficients. Length D if fit_intercept == false else D+1 |
scores | device pointer to confidence scores of length N (for binary logistic: [0,1], for multinomial: [0,...,C-1]) |
void ML::GLM::qnFit | ( | const raft::handle_t & | cuml_handle, |
const qn_params & | params, | ||
T * | X, | ||
bool | X_col_major, | ||
T * | y, | ||
I | N, | ||
I | D, | ||
I | C, | ||
T * | w0, | ||
T * | f, | ||
int * | num_iters, | ||
T * | sample_weight = nullptr , |
||
T | svr_eps = 0 |
||
) |
Fit a GLM using quasi newton methods.
cuml_handle | reference to raft::handle_t object |
params | model parameters |
X | device pointer to a contiguous feature matrix of dimension [N, D] |
X_col_major | true if X is stored column-major |
y | device pointer to label vector of length N |
N | number of examples |
D | number of features |
C | number of outputs (number of classes or 1 for regression) |
w0 | device pointer of size (D + (fit_intercept ? 1 : 0)) * C with initial point, overwritten by final result. |
f | host pointer holding the final objective value |
num_iters | host pointer holding the actual number of iterations taken |
sample_weight | device pointer to sample weight vector of length n_rows (nullptr for uniform weights) |
svr_eps | epsilon parameter for svr |
void ML::GLM::qnFitSparse | ( | const raft::handle_t & | cuml_handle, |
const qn_params & | params, | ||
T * | X_values, | ||
I * | X_cols, | ||
I * | X_row_ids, | ||
I | X_nnz, | ||
T * | y, | ||
I | N, | ||
I | D, | ||
I | C, | ||
T * | w0, | ||
T * | f, | ||
int * | num_iters, | ||
T * | sample_weight = nullptr , |
||
T | svr_eps = 0 |
||
) |
Fit a GLM using quasi newton methods.
cuml_handle | reference to raft::handle_t object |
params | model parameters |
X_values | feature matrix values (CSR format), length = X_nnz |
X_cols | feature matrix columns (CSR format), length = X_nnz, range = [0, ... D-1] |
X_row_ids | feature matrix compressed row ids (CSR format), length = N + 1, range = [0, ... X_nnz] |
X_nnz | number of non-zero entries in the feature matrix (CSR format) |
y | device pointer to label vector of length N |
N | number of examples |
D | number of features |
C | number of outputs (number of classes or 1 for regression) |
w0 | device pointer of size (D + (fit_intercept ? 1 : 0)) * C with initial point, overwritten by final result. |
f | host pointer holding the final objective value |
num_iters | host pointer holding the actual number of iterations taken |
sample_weight | device pointer to sample weight vector of length n_rows (nullptr for uniform weights) |
svr_eps | epsilon parameter for svr |
void ML::GLM::qnPredict | ( | const raft::handle_t & | cuml_handle, |
const qn_params & | params, | ||
T * | X, | ||
bool | X_col_major, | ||
I | N, | ||
I | D, | ||
I | C, | ||
T * | coefs, | ||
T * | preds | ||
) |
Predict a GLM using quasi newton methods.
cuml_handle | reference to raft::handle_t object |
params | model parameters |
X | device pointer to a contiguous feature matrix of dimension [N, D] |
X_col_major | true if X is stored column-major |
N | number of examples |
D | number of features |
C | number of outputs (number of classes or 1 for regression) |
coefs | device pointer to model coefficients. Length D if fit_intercept == false else D+1 |
preds | device pointer to predictions of length N (for binary logistic: [0,1], for multinomial: [0,...,C-1]) |
void ML::GLM::qnPredictSparse | ( | const raft::handle_t & | cuml_handle, |
const qn_params & | params, | ||
T * | X_values, | ||
I * | X_cols, | ||
I * | X_row_ids, | ||
I | X_nnz, | ||
I | N, | ||
I | D, | ||
I | C, | ||
T * | coefs, | ||
T * | preds | ||
) |
Predict a GLM using quasi newton methods.
cuml_handle | reference to raft::handle_t object |
params | model parameters |
X_values | feature matrix values (CSR format), length = X_nnz |
X_cols | feature matrix columns (CSR format), length = X_nnz, range = [0, ... D-1] |
X_row_ids | feature matrix compressed row ids (CSR format), length = N + 1, range = [0, ... X_nnz] |
X_nnz | number of non-zero entries in the feature matrix (CSR format) |
N | number of examples |
D | number of features |
C | number of outputs (number of classes or 1 for regression) |
coefs | device pointer to model coefficients. Length D if fit_intercept == false else D+1 |
preds | device pointer to predictions of length N (for binary logistic: [0,1], for multinomial: [0,...,C-1]) |