19 #include <cudf/detail/utilities/assert.cuh>
20 #include <cudf/fixed_point/temporary.hpp>
23 #include <cuda/std/functional>
24 #include <cuda/std/limits>
25 #include <cuda/std/type_traits>
26 #include <cuda/std/utility>
55 enum class Radix : int32_t { BASE_2 = 2, BASE_10 = 10 };
66 return cuda::std::is_same_v<T, int32_t> ||
67 cuda::std::is_same_v<T, int64_t> ||
68 cuda::std::is_same_v<T, __int128_t>;
84 template <
typename Rep,
87 typename cuda::std::enable_if_t<(cuda::std::is_same_v<int32_t, T> &&
88 cuda::std::is_integral_v<Rep>)>* =
nullptr>
91 cudf_assert(exponent >= 0 &&
"integer exponentiation with negative exponent is not possible.");
93 if constexpr (Base == numeric::Radix::BASE_2) {
return static_cast<Rep
>(1) << exponent; }
99 if (exponent == 0) {
return static_cast<Rep
>(1); }
100 auto extra =
static_cast<Rep
>(1);
101 auto square =
static_cast<Rep
>(Base);
102 while (exponent > 1) {
103 if (exponent & 1) { extra *= square; }
107 return square * extra;
121 template <
typename Rep, Radix Rad,
typename T>
124 return val / ipow<Rep, Rad>(
static_cast<int32_t
>(scale));
138 template <
typename Rep, Radix Rad,
typename T>
141 return val * ipow<Rep, Rad>(
static_cast<int32_t
>(-scale));
157 template <
typename Rep, Radix Rad,
typename T>
160 if (scale == 0) {
return val; }
161 if (scale > 0) {
return right_shift<Rep, Rad>(val, scale); }
162 return left_shift<Rep, Rad>(val, scale);
185 template <
typename Rep,
186 typename cuda::std::enable_if_t<is_supported_representation_type<Rep>()>* =
nullptr>
208 template <
typename Rep, Radix Rad>
215 static constexpr
auto rad = Rad;
225 template <
typename T,
226 typename cuda::std::enable_if_t<cuda::std::is_integral_v<T> &&
227 is_supported_representation_type<Rep>()>* =
nullptr>
231 : _value{detail::shift<Rep, Rad>(static_cast<Rep>(value), scale)}, _scale{scale}
241 : _value{s.value}, _scale{s.scale}
252 template <
typename T,
typename cuda::std::enable_if_t<cuda::std::is_
integral_v<T>>* =
nullptr>
254 : _value{static_cast<Rep>(value)}, _scale{
scale_type{0}}
270 template <
typename U,
typename cuda::std::enable_if_t<cuda::std::is_
integral_v<U>>* =
nullptr>
276 auto const value = cuda::std::common_type_t<U, Rep>(_value);
277 return static_cast<U
>(detail::shift<Rep, Rad>(value,
scale_type{-_scale}));
311 return static_cast<bool>(_value);
322 template <
typename Rep1, Radix Rad1>
337 template <
typename Rep1, Radix Rad1>
352 template <
typename Rep1, Radix Rad1>
367 template <
typename Rep1, Radix Rad1>
398 template <
typename Rep1, Radix Rad1>
415 template <
typename Rep1, Radix Rad1>
430 template <
typename Rep1, Radix Rad1>
445 template <
typename Rep1, Radix Rad1>
462 template <
typename Rep1, Radix Rad1>
479 template <
typename Rep1, Radix Rad1>
496 template <
typename Rep1, Radix Rad1>
513 template <
typename Rep1, Radix Rad1>
530 template <
typename Rep1, Radix Rad1>
547 template <
typename Rep1, Radix Rad1>
564 template <
typename Rep1, Radix Rad1>
579 if (scale == _scale) {
return *
this; }
580 Rep
const value = detail::shift<Rep, Rad>(_value,
scale_type{scale - _scale});
587 explicit operator std::string()
const
590 auto const av = detail::abs(_value);
591 Rep
const n = detail::exp10<Rep>(-_scale);
592 Rep
const f = av % n;
593 auto const num_zeros =
594 std::max(0, (-_scale -
static_cast<int32_t
>(detail::to_string(f).size())));
595 auto const zeros = std::string(num_zeros,
'0');
596 auto const sign = _value < 0 ? std::string(
"-") : std::string();
597 return sign + detail::to_string(av / n) + std::string(
".") + zeros +
598 detail::to_string(av % n);
600 auto const zeros = std::string(_scale,
'0');
601 return detail::to_string(_value) + zeros;
614 template <
typename Rep,
typename T>
617 return rhs > 0 ? lhs > cuda::std::numeric_limits<Rep>::max() - rhs
618 : lhs < cuda::std::numeric_limits<Rep>::min() - rhs;
629 template <
typename Rep,
typename T>
632 return rhs > 0 ? lhs < cuda::std::numeric_limits<Rep>::min() + rhs
633 : lhs > cuda::std::numeric_limits<Rep>::max() + rhs;
644 template <
typename Rep,
typename T>
647 return lhs == cuda::std::numeric_limits<Rep>::min() && rhs == -1;
658 template <
typename Rep,
typename T>
661 auto const min = cuda::std::numeric_limits<Rep>::min();
662 auto const max = cuda::std::numeric_limits<Rep>::max();
663 if (rhs > 0) {
return lhs > max / rhs || lhs < min / rhs; }
664 if (rhs < -1) {
return lhs > min / rhs || lhs < max / rhs; }
665 return rhs == -1 && lhs == min;
669 template <
typename Rep1, Radix Rad1>
673 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
676 #if defined(__CUDACC_DEBUG__)
678 assert(!addition_overflow<Rep1>(lhs.
rescaled(scale)._value, rhs.
rescaled(scale)._value) &&
679 "fixed_point overflow");
687 template <
typename Rep1, Radix Rad1>
691 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
694 #if defined(__CUDACC_DEBUG__)
696 assert(!subtraction_overflow<Rep1>(lhs.
rescaled(scale)._value, rhs.
rescaled(scale)._value) &&
697 "fixed_point overflow");
705 template <
typename Rep1, Radix Rad1>
709 #if defined(__CUDACC_DEBUG__)
711 assert(!multiplication_overflow<Rep1>(lhs._value, rhs._value) &&
"fixed_point overflow");
720 template <
typename Rep1, Radix Rad1>
724 #if defined(__CUDACC_DEBUG__)
726 assert(!division_overflow<Rep1>(lhs._value, rhs._value) &&
"fixed_point overflow");
735 template <
typename Rep1, Radix Rad1>
739 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
744 template <
typename Rep1, Radix Rad1>
748 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
753 template <
typename Rep1, Radix Rad1>
757 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
762 template <
typename Rep1, Radix Rad1>
766 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
771 template <
typename Rep1, Radix Rad1>
775 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
780 template <
typename Rep1, Radix Rad1>
784 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
789 template <
typename Rep1, Radix Rad1>
793 auto const scale = cuda::std::min(lhs._scale, rhs._scale);
794 auto const remainder = lhs.
rescaled(scale)._value % rhs.
rescaled(scale)._value;
A type for representing a number with a fixed amount of precision.
CUDF_HOST_DEVICE fixed_point(scaled_integer< Rep > s)
Constructor that will not perform shifting (assumes value already shifted)
CUDF_HOST_DEVICE fixed_point< Rep, Rad > rescaled(scale_type scale) const
Method for creating a fixed_point number with a new scale
CUDF_HOST_DEVICE rep value() const
Method that returns the underlying value of the fixed_point number.
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > & operator*=(fixed_point< Rep1, Rad1 > const &rhs)
operator *=
CUDF_HOST_DEVICE scale_type scale() const
Method that returns the scale of the fixed_point number.
CUDF_HOST_DEVICE fixed_point(T const &value)
"Scale-less" constructor that constructs fixed_point number with a specified value and scale of zero
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > & operator-=(fixed_point< Rep1, Rad1 > const &rhs)
operator -=
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > & operator+=(fixed_point< Rep1, Rad1 > const &rhs)
operator +=
Rep rep
The representation type.
CUDF_HOST_DEVICE fixed_point()
Default constructor that constructs fixed_point number with a value and scale of zero.
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > & operator/=(fixed_point< Rep1, Rad1 > const &rhs)
operator /=
CUDF_HOST_DEVICE fixed_point(T const &value, scale_type const &scale)
Constructor that will perform shifting to store value appropriately (from integral types)
CUDF_HOST_DEVICE fixed_point< Rep, Rad > & operator++()
operator ++ (post-increment)
constexpr CUDF_HOST_DEVICE T left_shift(T const &val, scale_type const &scale)
Function that performs a left shift scale "times" on the val
constexpr CUDF_HOST_DEVICE Rep ipow(T exponent)
A function for integer exponentiation by squaring.
constexpr CUDF_HOST_DEVICE T right_shift(T const &val, scale_type const &scale)
Function that performs a right shift scale "times" on the val
Radix
Scoped enumerator to use when constructing fixed_point
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > operator-(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE bool operator>=(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE bool operator<=(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE bool operator==(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > operator%(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE auto division_overflow(T lhs, T rhs)
Function for identifying integer overflow when dividing.
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > operator/(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
scale_type
The scale type for fixed_point.
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > operator*(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE bool operator>(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE auto addition_overflow(T lhs, T rhs)
Function for identifying integer overflow when adding.
CUDF_HOST_DEVICE fixed_point< Rep1, Rad1 > operator+(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE auto multiplication_overflow(T lhs, T rhs)
Function for identifying integer overflow when multiplying.
constexpr CUDF_HOST_DEVICE auto is_supported_representation_type()
Returns true if the representation type is supported by fixed_point
CUDF_HOST_DEVICE bool operator!=(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
CUDF_HOST_DEVICE auto subtraction_overflow(T lhs, T rhs)
Function for identifying integer overflow when subtracting.
CUDF_HOST_DEVICE bool operator<(fixed_point< Rep1, Rad1 > const &lhs, fixed_point< Rep1, Rad1 > const &rhs)
fixed_point and supporting types
Helper struct for constructing fixed_point when value is already shifted.
Rep value
The value of the fixed point number.
CUDF_HOST_DEVICE scaled_integer(Rep v, scale_type s)
Constructor for scaled_integer
scale_type scale
The scale of the value.
Type declarations for libcudf.
#define CUDF_HOST_DEVICE
Indicates that the function or method is usable on host and device.