cugraph.dask.centrality.katz_centrality.katz_centrality#
- cugraph.dask.centrality.katz_centrality.katz_centrality(input_graph, alpha=None, beta=1.0, max_iter=100, tol=1e-06, nstart=None, normalized=True)[source]#
Compute the Katz centrality for the nodes of the graph G.
- Parameters:
- input_graphcuGraph.Graph
cuGraph graph descriptor with connectivity information. The graph can contain either directed or undirected edges.
- alphafloat, optional (default=None)
Attenuation factor. If alpha is not specified then it is internally calculated as 1/(degree_max) where degree_max is the maximum out degree.
- NOTE
The maximum acceptable value of alpha for convergence alpha_max = 1/(lambda_max) where lambda_max is the largest eigenvalue of the graph. Since lambda_max is always lesser than or equal to degree_max for a graph, alpha_max will always be greater than or equal to (1/degree_max). Therefore, setting alpha to (1/degree_max) will guarantee that it will never exceed alpha_max thus in turn fulfilling the requirement for convergence.
- betafloat, optional (default=None)
Weight scalar added to each vertex’s new Katz Centrality score in every iteration. If beta is not specified then it is set as 1.0.
- max_iterint, optional (default=100)
The maximum number of iterations before an answer is returned. This can be used to limit the execution time and do an early exit before the solver reaches the convergence tolerance. If this value is lower or equal to 0 cuGraph will use the default value, which is 100.
- tolfloat, optional (default=1.0e-5)
Set the tolerance the approximation, this parameter should be a small magnitude value. The lower the tolerance the better the approximation. If this value is 0.0f, cuGraph will use the default value which is 1.0e-6. Setting too small a tolerance can lead to non-convergence due to numerical roundoff. Usually values between 1e-2 and 1e-6 are acceptable.
- nstartdask_cudf.Dataframe, optional (default=None)
Distributed GPU Dataframe containing the initial guess for katz centrality.
- nstart[‘vertex’]dask_cudf.Series
Contains the vertex identifiers
- nstart[‘values’]dask_cudf.Series
Contains the katz centrality values of vertices
- normalizednot supported
If True normalize the resulting katz centrality values
- Returns:
- katz_centralitydask_cudf.DataFrame
GPU distributed data frame containing two dask_cudf.Series of size V: the vertex identifiers and the corresponding katz centrality values.
- ddf[‘vertex’]dask_cudf.Series
Contains the vertex identifiers
- ddf[‘katz_centrality’]dask_cudf.Series
Contains the katz centrality of vertices
Examples
>>> import cugraph.dask as dcg >>> import dask_cudf >>> # ... Init a DASK Cluster >>> # see https://docs.rapids.ai/api/cugraph/stable/dask-cugraph.html >>> # Download dataset from https://github.com/rapidsai/cugraph/datasets/.. >>> chunksize = dcg.get_chunksize(datasets_path / "karate.csv") >>> ddf = dask_cudf.read_csv(datasets_path / "karate.csv", ... blocksize=chunksize, delimiter=" ", ... names=["src", "dst", "value"], ... dtype=["int32", "int32", "float32"]) >>> dg = cugraph.Graph(directed=True) >>> dg.from_dask_cudf_edgelist(ddf, source='src', destination='dst') >>> pr = dcg.katz_centrality(dg)