pylibcugraphops.operators.agg_dmpnn_e2e_bwd#
- pylibcugraphops.operators.agg_dmpnn_e2e_bwd = <nanobind.nb_func object>#
- Computes the backward pass for D-MPNN-like full graph aggregation
(agg_dmpnn_csc) using edge features in an edge-to-edge reduction scheme (e2e)
agg_dmpnn_e2n_fwd( grad_input_edge_embedding: device array, grad_output_edge_embedding: device array, graph: pylibcugraphops.csc_int[32|64], rev_edge_ids: device array, concat_own: bool, stream_id: int = 0 )
- Parameters:
- grad_input_edge_embeddingdevice array type
Device array containing the output gradient on input edge embeddings of forward.
- grad_output_edge_embeddingdevice array type
Device array containing the input gradient on output edge embeddings of forward.
- graphopaque graph type
graph used for the operation.
- rev_edge_idsdevice array
position indices for each edge of the corresponding reverse edge
- concat_ownbool
concat an edge’s input features to the aggregated output features
- stream_idint, default=0
CUDA stream pointer as a python int