cugraph.from_cudf_edgelist#
- cugraph.from_cudf_edgelist(df, source='source', destination='destination', edge_attr=None, create_using=<class 'cugraph.structure.graph_classes.Graph'>, renumber=True)[source]#
Return a new graph created from the edge list representaion. This function is added for NetworkX compatibility (this function is a RAPIDS version of NetworkX’s from_pandas_edge_list()). This function does not support multiple source or destination columns. But does support renumbering
- Parameters:
- dfcudf.DataFrame
This cudf.DataFrame contains columns storing edge source vertices, destination (or target following NetworkX’s terminology) vertices, and (optional) weights.
- sourcestring or integer, optional (default=’source’)
This is used to index the source column.
- destinationstring or integer, optional (default=’destination’)
This is used to index the destination (or target following NetworkX’s terminology) column.
- edge_attrstring or integer, optional (default=None)
This pointer can be
None
. If not, this is used to index the weight column.- create_using: cugraph.Graph (instance or class), optional (default=Graph)
Specify the type of Graph to create. Can pass in an instance to create a Graph instance with specified ‘directed’ attribute.
- renumberbool, optional (default=True)
If source and destination indices are not in range 0 to V where V is number of vertices, renumber argument should be True.
Examples
>>> M = cudf.read_csv(datasets_path / 'karate.csv', delimiter=' ', ... dtype=['int32', 'int32', 'float32'], header=None) >>> G = cugraph.Graph() >>> G = cugraph.from_cudf_edgelist(M, source='0', destination='1', ... edge_attr='2')