pylibcugraphops.operators.agg_concat_n2n_fwd#
- pylibcugraphops.operators.agg_concat_n2n_fwd = <nanobind.nb_func object>#
- Computes the forward pass for simple aggregation using node features in an
node-to-node reduction (n2n) on a graph while concatenating the original features of output at the end (agg_concat).
agg_concat_n2n_fwd( output_embedding: device array, input_embedding: device array, graph: pylibcugraphops.csc_int[32|64], aggregation_operation: pylibcugraphops.operators.AggOp = pylibcugraphops.operators.AggOp.Sum, output_extrema_location: Optional[device array] = None, stream_id: int = 0 ) -> None
- Parameters:
- output_embeddingdevice array type
Device array containing the output node embeddings. Shape:
(graph.n_dst_nodes, 2 * dim_in)
.- input_embeddingdevice array type
Device array containing the input node embeddings. Shape:
(graph.n_dst_nodes, dim_in)
.- graphopaque graph type
The graph used for the operation.
- aggregation_operationAggOp, default=AggOp.Sum
The kind of aggregation operation.
- output_extrema_locationdevice array type | None
Device array containing the location of the min/max embeddings. This is required for min/max aggregation only, and can be
None
otherwise. Shape:(graph.n_dst_nodes, dim_in)
if set.- stream_idint, default=0
CUDA stream pointer as a python int.