Community#

EgoNet#

cugraph.batched_ego_graphs(G, seeds[, ...])

This function is deprecated.

cugraph.ego_graph(G, n[, radius, center, ...])

Compute the induced subgraph of neighbors centered at node n, within a given radius.

Ensemble clustering for graphs (ECG)#

cugraph.ecg(input_graph[, min_weight, ...])

Compute the Ensemble Clustering for Graphs (ECG) partition of the input graph.

K-Truss#

cugraph.k_truss(G, k)

Returns the K-Truss subgraph of a graph for a specific k.

cugraph.ktruss_subgraph(G, k[, use_weights])

Returns the K-Truss subgraph of a graph for a specific k.

Leiden#

cugraph.leiden(G[, max_iter, resolution, ...])

Compute the modularity optimizing partition of the input graph using the Leiden algorithm

Louvain#

cugraph.louvain(G[, max_level, max_iter, ...])

Compute the modularity optimizing partition of the input graph using the Louvain method

Louvain (MG)#

cugraph.dask.community.louvain.louvain(...)

Compute the modularity optimizing partition of the input graph using the Louvain method

Spectral Clustering#

cugraph.analyzeClustering_edge_cut(G, ...[, ...])

Compute the edge cut score for a partitioning/clustering The assumption is that “clustering” is the results from a call from a special clustering algorithm and contains columns named “vertex” and “cluster”.

cugraph.analyzeClustering_modularity(G, ...)

Compute the modularity score for a given partitioning/clustering.

cugraph.analyzeClustering_ratio_cut(G, ...)

Compute the ratio cut score for a partitioning/clustering

cugraph.spectralBalancedCutClustering(G, ...)

Compute a clustering/partitioning of the given graph using the spectral balanced cut method.

cugraph.spectralModularityMaximizationClustering(G, ...)

Compute a clustering/partitioning of the given graph using the spectral modularity maximization method.

Subgraph Extraction#

cugraph.subgraph(G, vertices)

Compute a subgraph of the existing graph including only the specified vertices.

Triangle Counting#

cugraph.triangle_count(G[, start_list])

Compute the number of triangles (cycles of length three) in the input graph.