cugraph.dask.components.connectivity.weakly_connected_components#
- cugraph.dask.components.connectivity.weakly_connected_components(input_graph)[source]#
Generate the Weakly Connected Components and attach a component label to each vertex.
- Parameters:
- input_graphcugraph.Graph
The graph descriptor should contain the connectivity information and weights. The adjacency list will be computed if not already present. The current implementation only supports undirected graphs.
- Returns:
- resultdask_cudf.DataFrame
GPU distributed data frame containing 2 dask_cudf.Series
- ddf[‘vertex’]: dask_cudf.Series
Contains the vertex identifiers
- ddf[‘labels’]: dask_cudf.Series
Contains the wcc labels
Examples
>>> import cugraph.dask as dcg >>> import dask_cudf >>> # ... Init a DASK Cluster >>> # see https://docs.rapids.ai/api/cugraph/stable/dask-cugraph.html >>> # Download dataset from https://github.com/rapidsai/cugraph/datasets/.. >>> chunksize = dcg.get_chunksize(datasets_path / "karate.csv") >>> ddf = dask_cudf.read_csv(datasets_path / "karate.csv", ... blocksize=chunksize, delimiter=" ", ... names=["src", "dst", "value"], ... dtype=["int32", "int32", "float32"]) >>> dg = cugraph.Graph(directed=False) >>> dg.from_dask_cudf_edgelist(ddf, source='src', destination='dst', ... edge_attr='value') >>> result = dcg.weakly_connected_components(dg)