pylibcugraph.hits#
- pylibcugraph.hits(ResourceHandle resource_handle, _GPUGraph graph, double tol, size_t max_iter, initial_hubs_guess_vertices, initial_hubs_guess_values, bool_t normalized, bool_t do_expensive_check)[source]#
Compute HITS hubs and authorities values for each vertex
The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.
- Parameters:
- resource_handleResourceHandle
Handle to the underlying device resources needed for referencing data and running algorithms.
- graphSGGraph or MGGraph
The input graph, for either Single or Multi-GPU operations.
- tolfloat, optional (default=1.0e-5)
Set the tolerance the approximation, this parameter should be a small magnitude value. This parameter is not currently supported.
- max_iterint, optional (default=100)
The maximum number of iterations before an answer is returned.
- initial_hubs_guess_verticesdevice array type, optional (default=None)
Device array containing the pointer to the array of initial hub guess vertices
- initial_hubs_guess_valuesdevice array type, optional (default=None)
Device array containing the pointer to the array of initial hub guess values
- normalizedbool, optional (default=True)
- do_expensive_checkbool
If True, performs more extensive tests on the inputs to ensure validitity, at the expense of increased run time.
- Returns:
- A tuple of device arrays, where the third item in the tuple is a device
- array containing the vertex identifiers, the first and second items are device
- arrays containing respectively the hubs and authorities values for the corresponding
- vertices
Examples
# FIXME: No example yet